

# Specialist Maths Units 3/4 <br> Complex Numbers <br> Practice Questions 

## Short Answer Questions

## Question 1

a) Express $z_{1}=-\frac{\sqrt{3}}{2}+\frac{i}{2}$ in polar form.
b) Plot and label $z_{1}$ on the Argand diagram below:

c) Also label the following points on the same diagram:
i. $z_{2}=2 i z_{1}$
ii. $z_{3}=\overline{\left(z_{1}\right)^{3}}$ (the conjugate of the cube of $z_{1}$ )

## Question 2

a) Let $z_{1}=\sqrt{2}+\sqrt{2} i$. Express $z_{1}$ in polar form.
ii. Find $\overline{z_{1}}$ in polar form.
iii. Let $z_{1}=2 \operatorname{cis}\left(\frac{3 \pi}{4}\right)$. Show that $\frac{z_{1}}{z_{2}}=-i$.

If $z_{1}, z_{2} z_{3}$ are the three corners of an equilateral triangle on an Argand diagram, find $z_{3}$.

## Question 3

a) Express $\{z: z \bar{z}=1\}$ in Cartesian form. Describe the shape of this region.
b) Shade the region $\{z: z \bar{z} \leq 1\} \cap\left\{z: \operatorname{Arg}(z)>\frac{2 \pi}{3}\right\}$ on the Argand diagram below.


## Question 4

Find in polar form all numbers $z \in \mathbb{C}$ such that $z^{3}+4-4 \sqrt{3} i=0$

## Question 5

On the Argand diagram below shade the region $R=T \cap S$, where
$T=\{z:|z-2+2 i|<2\}$ and $S=\left\{z:-\frac{\pi}{2} \leq \operatorname{Arg}(z) \leq-\frac{\pi}{4}\right\}$.


## Question 6

Consider the graph with rule $(z+2-i)(\bar{z}+2+i)=4$ where $z \in \mathbb{C}$.
Write this rule in Cartesian form.

## Question 7

Solve for $z$ :
a) $\frac{1}{\sqrt{z}}=a$ where $a=\sqrt{3}+i$. Give your answer in terms of a.
b) $\frac{1}{\sqrt[3]{z}}=\sqrt{3}+i . \quad$ Give your answer in the form $\frac{1}{\sqrt[a]{b}}(\operatorname{cis}(\theta))$
c) $z^{2}=9 i . \quad$ Give your answer in the form $r(\operatorname{cis}(\theta))$

## Question 8

Let $z=x+i y$ be a complex number where $x$ and $y$ are real.
a) $\frac{1}{1-z}$ in the form $a+b i$, where $a$ and $b$ are real quantites that depend on $x$ and $y$.
b) Hence, show that the relation $S=\left\{z: \operatorname{Im}\left(\frac{1}{1-z}\right)<1\right\}$ represents the exterior of a circle.
State the centre and radius of this circle.
c) Express $S$ in the form $|z+m+n i|>p$, where $m, n, p \in \mathbb{R}$

## Question 9

The locus $T$ defined by $T=\{z:|z+2-2 i|=4\}$ while the locus $S$ is defined by $S=\left\{z: \operatorname{Arg}(z+2+4 i)=\theta, 0<\theta<\frac{\pi}{2}\right\}$ such that $S$ and $T$ have only one point of intersection.
a) On the axes below sketch the regions defined by $S$ and $T$. State the centre of $T$ and the starting point of $S$.

b) Show that $\sin (\theta)=\frac{\sqrt{5}}{3}$
c) The complex number $w$ represents the intersection point of $S$ and $T$. Find $w$ in Cartesian form.

## Question 10

Let $v=2 \sqrt{3}-2 i$ and $w=\sqrt{3}+i$.
a) Find $\operatorname{Arg}\left(v^{4}\right)$
b) On the Argand diagram on the right, label the two complex numbers $w$ and $2 \bar{w} i$

c) Algebraically find $\operatorname{Im}\left(v \cdot w+\frac{v}{w}\right)$

## Question 11

Consider the graph with the rule $|z+2-i|=2$ where $z \in \mathbb{C}$.
a) Write this rule in Cartesian form.
b) Find the points of intersection of the graph with rules $|z+2-i|=2$ and $\operatorname{Arg}(z)=\pi$ in Cartesian form.
c) Sketch and shade the region
$\{z:|z+2-i| \leq 2\} \cap\{z:-\pi<\operatorname{Arg}(z) \leq$ $0\}, z \in \mathbb{C}$ on the Argand diagram on the right.

d) Calculate the area of the shaded region found in part $\mathbf{c}$.

## Question 12

$z_{1}=2 \sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)$ and $2 \operatorname{cis}\left(\frac{2 \pi}{3}\right)$
a) Find
i. $z_{1} z_{2}$
ii. $\frac{z_{1}}{z_{2}}$
b) $z_{1}$ is rotated $\frac{\pi}{2}$ about the origin in an anticlockwise direction to a new point $z_{3}$. Find $z_{3}$
c) Express $z_{2}$ in Cartesian form.
d) In Cartesian form $z_{1}=2+2 i$. Given that $z_{1}$ is a solution of the equation $z^{4}-2 z^{3}+3 z^{2}+4 z+24=0$ find the other three solutions.

## Question 13

For $w=\operatorname{cis}(\theta)$
a) Find $w^{2}$ and $w^{-2}$ in polar form.
b) Let $z=w+\frac{1}{w}$
i. Find $z^{2}$ in terms of $\theta$ and state why $z^{2}$ is real.
ii. Find the maximum and minimum values of $z^{2}$.

## Question 14

Represent the following subsets of $\mathbb{C}$ on an Argand diagram, include its Cartesian equation.

$$
|z+5 i|-|z-i|=4
$$

## Question 15

Given $z_{1} \sqrt{3}+i$ and $z_{2}=-\sqrt{2}-\sqrt{2} i$
a) Express $\frac{z_{1}}{z_{2}}$ in Cartesian form.
b) Express $z_{1}$ and $z_{2}$ in polar form.
c) Express $\frac{z_{1}}{z_{2}}$ in polar form.
d) Hence show that $\sin \left(\frac{11 \pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}$ and $\cos \left(\frac{11 \pi}{12}\right)=\frac{-\sqrt{6}-\sqrt{2}}{4}$

## Question 16

Given that $x^{2}+i x+6=5 x+2 i$,
a) Find the possible value(s) of $x$ if $x$ is a real number.
b) Find the possible value(s) of $x$ if $x$ is a complex number.

## Question 17

a) Show that the cubic equation

$$
z^{3}-3 \sqrt{3} i z^{2}-9 z+3 \sqrt{3} i=-4 \sqrt{3}-4 i
$$

b) Can be written in the form of

$$
(z-\sqrt{3} i)^{3}=-4 \sqrt{3}-4 i
$$

c) Hence, find in exact Cartesian form, all the solutions of the equation.

$$
z^{3}-3 \sqrt{3} i z^{2}-9 z+(3 \sqrt{3}+4) i+4 \sqrt{3}=0
$$

## Question 18

Let $z_{2}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$
a) Express $z_{2}$ in polar form.
b) Let $z_{1}=a+b i$ and $z_{1}^{2}=z_{2}$.

Using Cartesian methods, find $a$ and $b$ in the form $\frac{\sqrt{p+\sqrt{q}}}{r}$ and $\frac{\sqrt{p-\sqrt{q}}}{r}$ respectively where $p, q, r \in \mathbb{Z}$.
c) Hence, find expressions for $\cos \left(\frac{\pi}{8}\right)$ and $\sin \left(\frac{\pi}{8}\right)$
d) Hence, express $\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{\frac{17}{2}}$ in Cartesian form.

## Question 19

Consider the equation $z^{4}-2 z^{3}+7 z^{2}-4 z+10=0, z \in \mathbb{C}$
a) Use algebra of find real values of $a$ for which $a i$ is a solution to this equation.
b) Hence find all complex solutions to this equation.

## Question 20

a) Sketch the ponts $S=\{z:(z-\sqrt{2})(\bar{z}-\sqrt{2})=2, z \in \mathbb{C}\}$ on the Argand diagram below.

b) Show that, with the exception of a single value of $z$ which should be stated, the points in $S$ satisfy $\operatorname{Arg}(z-\sqrt{2})=2 \operatorname{Arg}(z)$.
c) Sketch the set of points $T=\{z: \operatorname{Arg}(z-\sqrt{2})=2 \operatorname{Arg}(z), z \in \mathbb{C}\}$ on the Argand diagram below.

d) Find in exact polar form all points in $T$ that satisfy $|z|=|z-3 \sqrt{2}|$.

## Question 21

Sketch the set of points $\left\{z: \operatorname{Arg}(z i-1)=\frac{\pi}{3}, z \in \mathbb{C}\right\}$ on the Argand diagram below.


## Question 22

Factorise $z^{2}+(2-2 i) z=-1-2 i$ over $\mathbb{C}$

## Multiple Choice Questions

## Question 1

Which points on the diagram below represents the complex number $z$ such that $z^{3}=8 i ?$
A. $P_{10}$ only
B. $P_{3}, P_{5}$ and $P_{10}$
C. $P_{4}, P_{8}$ and $P_{12}$
D. $P_{2}, P_{6}$ and $P_{10}$
E. $P_{1}$ only


## Question 2

For any complex number $z$, the location on an Argand diagram of the complex plane $u=i^{3} \bar{z}$ can be found by:
A. rotating $z$ through $\frac{3 \pi}{2}$ in an anticlockwise direction about the origin.
B. reflecting $z$ about the real axis and the reflecting it about the imaginary axis.
C. reflecting $z$ about the imaginary axis and then rotating anticlockwise through $\frac{\pi}{2}$ about the origin.
D. reflecting $z$ about the real axis and then rotating anticlockwise through $\frac{\pi}{2}$ about the origin.
E. rotating $z$ through $\frac{3 \pi}{2}$ in an clockwise direction about the origin.

## Question 3

The set of points in the complex plane defined by $|z|=|z+3 i|$ is represented by:
A. The circle with centre $(3,0)$ and radius 3 .
B. The circle with centre $(-3,0)$ and radius 3 .
C. The line $\operatorname{Im}(z)=-\frac{3}{2}$
D. The line $\operatorname{Im}(z)=\frac{3}{2}$
E. The point $z=-\frac{3 i}{2}$

## Question 4

Which of the following does not represent a circle in the complex plane?
A. $|z-1|=9$
B. $|z-3|=4$
C. $(z-3)(\bar{z}-3)=4$
D. $|z-3|=|z|$
E. $|z+1|=2|z|$

## Question 5

The complex number $z$ is given by $r \operatorname{cis}\left(\frac{2 \pi}{3}\right), i \bar{z}$ is best represented by:
D.

A.

B.


E.


## Question 6

If $z=a+b i$, where $a, b \in \mathbb{R}$, then $\frac{|i z|^{2}}{\bar{z}}$ simplifies to:
A. $i$
B. 1
C. $z$
D. $-z$
E. $i z$

## Question 7

The equation of the line shown in the diagram below is:

A. $\left\{z: \operatorname{Arg}(z)=\frac{3 \pi}{4}\right\}$
B. $\left\{z: \operatorname{Arg}(z)=-\frac{\pi}{4}\right\}$
C. $\left\{z: \operatorname{Arg}(z)=-\frac{\pi}{4}+2\right\}$
D. $\{z: \operatorname{Re}(z)+\operatorname{Im}(z)=0\}$
E. $\{z: \operatorname{Re}(z)+\operatorname{Im}(z)=2\}$

## Question 8

$\left(a \operatorname{cis}\left(\frac{\pi}{3}\right)\right)^{3} \cdot\left(b \operatorname{cis}\left(\frac{\pi}{6}\right)\right)^{2}$ simplifies to:
A. $a b \operatorname{cis}\left(\frac{\pi}{2}\right)$
B. $a^{3} b^{2} \operatorname{cis}\left(\frac{\pi}{2}\right)$
C. $a b \operatorname{cis}\left(\frac{4 \pi}{3}\right)$
D. $a^{3} b^{2} \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$
E. $a b \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$

## Question 9

If $(x+y i)^{2}=18 i$ for real values of $x$ and $y$, then:
A. $x=3$ and $y=3$
B. $x=-3$ and $y=3$
C. $x=3$ and $y=-3$
D. $x=3, y=-3$ and $x=-3, y=3$
E. $x=3, y=3$ and $x=-3, y=-3$

## Question 10

One of the linear factors of $x^{2}+a x+10$, where $a$ is a real number is $(x-3+i)$. The value of $a$ is:
A. 3
B. $-3-\frac{10}{3}$
C. -3
D. -6
E. 6

## Question 11

Let $u=\sqrt{3}-i$ and $v=i-1$. Then $|u v|$ is equal to:
A. $\sqrt{3}$
B. $2 \sqrt{2}$
C. 2
D. 0
E. 1

## Question 12

The subset of the complex plane defined by the relation $|z+5|-|z|=0$ is:
A. A circle
B. An ellipse
C. A straight line
D. A null set
E. A hyperbola

## Question 13

The Cartesian equation of the locus defined by $\left\{z: \operatorname{Arg}(z-1)<-\frac{3 \pi}{4}\right\}$ is:
A. $y>x+1, x<1$
B. $y<-x+1, x<-1$
C. $y<x+1, x<-1$
D. $y>x-1, y<0$
E. $y<-x-1, x>1$

## Question 14

Let $S=\{z:|z-3+2 i| \leq 1\}$. If $z \in S$, then the maximum value of $|z|$ is:
A. $\sqrt{13}-1$
B. $\sqrt{13}$
C. $\sqrt{13}+1$
D. 5
E. 7

## Question 15

If a polynomial with real coefficients has solutions $z=1-a i$ and $z=2$ over the set of complex numbers numbers, where $a$ is real, then its quadratic factor must be.
A. $z^{2}+4$
B. $z^{2}-2 a i z+1$
C. $z^{2}-2 z+1+a^{2}$
D. $z^{2}-4$
E. $z^{2}+2 z+1-a^{2}$

## Question 16

The complex number $z$ is given by $r \operatorname{cis}\left(-\frac{\pi}{6}\right)$, where $r>1, \frac{1}{\bar{z}}$ is best represented by:


C.

D.

$\operatorname{Im}(z)$


## Question 17

If $z=\pi \operatorname{cis}(3)$, then $\operatorname{Arg}\left(z^{2}\right)$ is equal to:
A. 9
B. 6
C. 0
D. $6-2 \pi$
E. $6-\pi$

## Question 18

Let $z=\frac{1}{\sin \theta}+\frac{1}{\cos \theta} i$ and $\theta \in\left[\frac{\pi}{2}, \pi\right]$. Then in polar form, $z$ is equal to:
A. $\frac{1}{\sin \theta \cos \theta} \operatorname{cis}(\theta)$
B. $\frac{2}{\sin 2 \theta} \operatorname{cis}(\theta-2 \pi)$
C. $\frac{-2}{\sin 2 \theta} \operatorname{cis}(\theta-\pi)$
D. $\frac{2}{\sin 2 \theta} \operatorname{cis}(2 \pi-\theta)$
E. $\frac{-2}{\sin 2 \theta} \operatorname{cis}(-\theta)$

## Question 19

Let $S=\{z:|z| \leq 3\} \cap\{z:|z-3-3 i| \leq 3\}$. Which of the following is correct?
A. $\operatorname{Arg}(z) \geq \frac{\pi}{2}$
B. $3 \sqrt{2}-3 \leq|z| \leq 3$
C. $\operatorname{Arg}(z)=\frac{\pi}{4}$
D. $\sqrt{3}-1 \leq|z| \leq 3$
E. $\operatorname{Re}(z)-\operatorname{Im}(z)=3$

## Question 20

If $|z|-z=1+2 i$, the:
A. $\operatorname{Re}(z)+\operatorname{Im}(z)=\frac{1}{2}$
B. $|z|=\sqrt{5}$
C. $\operatorname{Arg}(z)=\tan ^{-1}(2)$
D. $\operatorname{Re}(z)<\operatorname{Im}(z)$
E. $|z|=\frac{5}{2}$

## Question 21

Given the complex number $z=a \operatorname{cis}\left(\frac{\pi}{b}\right)$ where $a, b \in \mathbb{R} \backslash\{0\}$. Then $\frac{1}{\bar{z}}$ is equal to ?
A. $z=a \operatorname{cis}\left(\frac{\pi}{b}\right)$
B. $z=a \operatorname{cis}\left(-\frac{\pi}{b}\right)$
C. $z=\frac{1}{a} \operatorname{cis}\left(\frac{\pi}{b}\right)$
D. $z=\frac{1}{a} \operatorname{cis}\left(-\frac{\pi}{b}\right)$
E. $z=\frac{1}{a} \operatorname{cis}\left(\frac{b}{\pi}\right)$

## Extended Response Questions

## Question 1

Let $u=-\sqrt{3}-i$ and $P(z)=z^{3}+m z^{2}+n z-12$, where $m, n \in \mathbb{R}$
a) Express $\bar{u}$ in the form $r \operatorname{cis}(\theta)$
b) Show that $u+\bar{u}=4 \cos \left(\frac{5 \pi}{6}\right)$
c) Express $(z-u)(z-\bar{u})$ in the form $z^{2}+b z+c$, where $b, c \in \mathbb{R}$
d) If $u, \bar{u}$ and $a$ are the roots of the equation $P(z)=0$, find the value of the other root, $a$.
e) Hence state the exact value of $m$.
f) On the Argand plane below, plot the points $u, \bar{u}$ and $a$ corresponding to the three roots of $P(z)=0$, and describe the shape formed by connecting these three roots.


## Question 2

Let $A=\left\{z: \operatorname{Arg}(z+1)=\frac{\pi}{4}\right\}$ and $B=\{z:|z+1|=2\}$
a) Sketch the complex regions $A$ and $B$ on the Argand diagram below:

b) Write down the Cartesian equations of the regions defined by $A$ and $B$.
c) Show that $z_{0}=(\sqrt{2}-1)+\sqrt{2} i$ is the point of intersection of the regions $A$ and $B$.
d) i. Find $\left(z_{0}+1\right)^{6}$ in Cartesian form.
ii. Find both values of $\sqrt{z_{0}+1}$ in polar form.

## Question 3

a) i. Express the complex number $1+i$ in the form $r \operatorname{cis}(\theta)$
ii. Hence, show that $(1+i)^{11}=-32+32 i$.
b) i. Show that $z=3+2 i$ is a solution of the cubic equation $z^{3}-8 z^{2}+25 z-26=0, z \in \mathbb{C}$
ii. Hence state another non-real solution of the cubic equation $z^{3}-8 z^{2}+25 z-26=0$.
iii. Hence find a quadratic factor (with real coefficients) of $z^{3}-8 z^{2}+25 z-26=0$.
iv. Hence fully factorise $z^{3}-8 z^{2}+25 z-26$ over $\mathbb{C}$.
c) i. Expand $(\cos (\theta)+i \sin (\theta))^{3}$ without using de Moivre's theorem.
ii. By using de Moivre's theorem, show that $\cos (3 \theta)=4 \cos ^{3}(\theta)-3 \cos (\theta)$.
iii. Similarly, express $\sin (3 \theta)$ in terms of $\sin (\theta)$ only.

## Question 4

Let $z_{1}=\sqrt{3}+i$.
a) Express $z_{1}$ in polar form.
b) Plot the roots of the equation $z^{3}=8 i$ on the Argand diagram below, labelling each one clearly, expressing them in polar form.


Let $z=x+y i$ and $z_{1}=\sqrt{3}+i$ (from part a.)
c) Show that the Cartesian equation for the equation $z \bar{z}+\left|z_{1}\right| \cdot \operatorname{Re}\left(i^{2} z\right)-2 \operatorname{Im}(z)=-1$ is given by the Cartesian equation given by $(x-1)^{2}+(y-1)^{2}=1$

Let $S=\left\{z: z \bar{z}+\left|z_{1}\right| \cdot \operatorname{Re}\left(i^{2} z\right)-2 \operatorname{Im}(z) \leq-1\right\} \cap\left\{0 \leq \operatorname{Arg}(z) \leq \frac{\pi}{4}\right\}$
d) Sketch $S$ on the Argand diagram below.

e) If $z_{2} \in S$. Find the maximum and minimum values of $\left|z_{2}\right|$. Express your values in exact form.

## Question 5

Let $z_{1}=3-4 i$ and $z_{2}=2-i$
a) i. Express $\frac{1}{z_{1}}$ in Cartesian form.
ii. Find the values of $\operatorname{Arg}\left(z_{1}\right)$ to the nearest minute.
iii. Verify that $\operatorname{Im}\left(z_{1}\right)+\overline{z_{2}}+z_{1} z_{2}=-10 i$
iv. Find algebraically the square root(s) of $z_{1}$ and express them in Cartesian form.
b) i. On the complex plane below sketch $S$ where $S=\{z:|z-2+i|=|z+2-i|\}$.

ii. Find algebraically the Cartesian equation of $S$.
iii. Given that $z_{4}=3 \operatorname{cis}\left(\frac{\pi}{3}\right)$, state with reasons whether or not $z_{4} \in S$.
iv. Write down the subset of the complex plane that is equidistant from the points $z_{1}$ and $z_{4}$.

## Question 6

a) Let $u=2+2 i$ and $v=1+\sqrt{3} i$. Express $u \cdot v$ in polar form.
b) If $\theta=\operatorname{Arg}\left(\frac{u}{v}\right)$ show that $\theta=-\frac{\pi}{12}$
c) Hence, or otherwise, find an expression for $\left(\frac{u}{v}\right)^{2}$ in exact polar form.
d) Plot, and clearly label $\frac{u}{v}$ and $\left(\frac{u}{v}\right)^{2}$ on the Argand diagram.

e) Hence shade in, on the Argand diagram above, the region represented by:

$$
\left\{z: \operatorname{Arg}(z) \leq \operatorname{Arg}\left(\frac{u}{v}\right)\right\} \cap\left\{\operatorname{Arg}(z)>\operatorname{Arg}\left(\frac{u}{v}\right)^{2}\right\} \cap\{z:|z| \leq 2\}
$$

## Question 7

a) Express $-4 \sqrt{2}+4 \sqrt{2} i$ in exact polar form.
b) Show that one of the cube roots of $-4 \sqrt{2}+4 \sqrt{2} i$ is $u=2 \operatorname{cis}\left(\frac{\pi}{4}\right)$
c) Find the remaining two cube roots of $-4 \sqrt{2}+4 \sqrt{2} i$ in exact polar form.
d) Express $u=2 \operatorname{cis}\left(\frac{\pi}{4}\right)$ in exact Cartesian form.
e) Plot the three cube roots of $-4 \sqrt{2}+4 \sqrt{2} i$ on the Argand diagram below.

f) Show that the cubic equation $z^{3}-3 \sqrt{2} i z^{2}-6 z=-4 \sqrt{2}+2 \sqrt{2} i$ can be expressed in the form $(z-w)^{3}=-4 \sqrt{2}+4 \sqrt{2} i$ where $w$ is a complex number.
g) Hence find, in exact Cartesian form, one root of the equation:

$$
z^{3}-3 \sqrt{2} i z^{2}-6 z=-4 \sqrt{2}+2 \sqrt{2} i
$$

## Question 8

a) Find the Cartesian equation of the set of points defined by:
i. $i z-i \bar{z}=-9$, where $z \in \mathbb{C}$
ii. $|z-3-4 i|=1$, where $z \in \mathbb{C}$
iii. $\operatorname{Arg}(z-1+i)=\frac{2 \pi}{3}$, where $z \in \mathbb{C}$

Consider the regions:

$$
\begin{aligned}
& S=\{z:|z-3-4 i| \leq 1, z \in \mathbb{C}\} \text { and } \\
& T=\{z:|z| \leq 2, z \in \mathbb{C}\} \cap \\
& \left\{z: \operatorname{Arg}(z-1+i) \leq \frac{2 \pi}{3}\right\}
\end{aligned}
$$


ii. $T$

Let $z_{1} \in T$ and $z_{2} \in S$
c) i. Find the minimum value of $\left|z_{1}-z_{2}\right|$.
ii. Hence, find in exact cartesian form the values of $z_{1}$ and $z_{2}$ for which $\left|z_{1}-z_{2}\right|$ has its minimum value.
d) i. Find in degrees, correct to one decimal place, the minimum value of $\operatorname{Arg}\left(z_{2}\right)$
ii. Hence find the Cartesian form, correct to one decimal place, the value of $z_{2}$ for which $\operatorname{Arg}\left(z_{2}\right)$ has its minimum value.

## Question 9

a) Consider the graph with the rule $\operatorname{Arg}(z+1-i)=\frac{\pi}{4}$, where $z \in \mathbb{C}$
i. Write this region as a rule in Cartesian form.
ii. Sketch this graph on the Argand diagram below.

iii. Shade the region $\left\{z: \operatorname{Arg}(z+1-i)>\frac{\pi}{4}, z \in \mathbb{C}\right\}$ on the Argand diagram below.

b) Sketch the region with rule $\operatorname{Arg}((1+i) z+1-i)=\frac{\pi}{4}$, where $z \in \mathbb{C}$ on the Argand diagram below.

c) Consider the graph with rule $\operatorname{Im}(2 z+1-i)+\operatorname{Re}(z+7+i)=0)$, where $z \in \mathbb{C}$
i. Write this rule in Cartesian form.
ii. Sketch the graph with rule
$\{z: \operatorname{Im}(2 \bar{z}+1-i)+\operatorname{Re}(z+7+i)=0\} \cap\left\{\operatorname{Arg}(z+1-i)>\frac{\pi}{4}\right\}$ on the Argand diagram below


## Question 10

a) Let $w=2-3 i$ and $z_{1}=3+4 i$
i. Find $\bar{w}+z$
ii. Find $|w|$
iii. Express $\frac{w}{z}$ in the form $a+b i$
b) On the Argand diagram, the complex numbers $O=0, X=1+\sqrt{3} i, Y=\sqrt{3}+i$ and $z_{2}$ form a rhombus.
i. Find $z_{2}$ in the form $a+b i$, where $a$ and $b$ are real numbers.
ii. The interior angle, $\theta=\angle O X Y$. Use a vector method to find the value of $\theta$.
c) Find in polar form, all the solutions of $z^{3}=8$
d) i. Use the binomial theorem to expand $(\cos (\theta)+\sin (\theta) i)^{5}$
ii. Use de Moivre's theorem and your result from part (i) the prove that $\sin (5 \theta)=16 \sin ^{5}(\theta)-20 \sin ^{3}(\theta)+5 \sin (\theta)$
iii. Hence, show that $x=\sin \left(\frac{\pi}{10}\right)$ is one of the solutions to $16 x^{5}-20 x^{3}+5 x-1=0$
iv. Find the polynomial $p(x)$ such that $(x-1) p(x)=16 x^{5}-20 x^{3}+5 x-1$
v. Find the value of $a$ such that $\left(4 x^{2}+a x-1\right)^{2}$
vi. Hence, find the exact value of $\sin \left(\frac{\pi}{10}\right)$

## Question 11

Consider the graph with rule $|z+1-2 i|=2$, where $z \in \mathbb{C}$
a) Write this rule in Cartesian form.
b) Sketch this graph on the Argand diagram below.

c) i. Consider the rule $\operatorname{Arg}(z+i)=a$ where $0<a<\frac{\pi}{2}$

Explain why the Cartesian equation for this rule is $y=m x-1$, where $x>0, m>0$
ii. Hence, find in simplest form the exact minimum value of $\operatorname{Arg}(z+i)$ where $z$ satisfies $|z+1-2 i|=2$
iii. Find in simplest form the exact value of $z$ such that $\operatorname{Arg}(z+i)$ has its minimum value.

## Question 12

The point $P$ on the Argand diagram below represents the complex number $z$. The points $Q$ and $R$ represent the points $w z$ and $\bar{w} z$ respectively, where
$w=\cos \left(\frac{2 \pi}{3}\right)+\sin \left(\frac{2 \pi}{3}\right)$. The point $M$ is the midpoint of $Q R$.
(The diagram is not drawn to scale.)
a) If $z=r \operatorname{cis}(\theta)$ find $w z$ and $\bar{w} z$ in polar form.

b) Hence explain why $|\overrightarrow{O P}|=|\overrightarrow{O Q}|=|\overrightarrow{O R}|$
c) Show that the complex number representing $M$ is $-\frac{1}{2} z$
d) The point $S$ is chosen such that $P Q S R$ is a parallelogram. Find the complex number represented by $S$ in terms of $z$.

## Question 13

a) Use algebra to find the values which the real numbers $a$ and $b$ must take for $-2+i$ to be a solution to the complex equation $i z^{2}-(2-a i) z+b+i-0$.
b) Briefly explain why the conjugate root theorem cannot be used to find the second solution to this equation.

There are two different methods (parts c. and $\mathbf{d}$. below) by which the second solution can be found.
c) i. Write down a linear factor of the polynomial $i z^{2}-(2-a i) z+b+i$
ii. Use polynomial long division to find the second linear factor.
iii. Hence determine a second solution to $i z^{2}-(2-a i) z+b+i=0$.
d) i. Use the quadratic formula to show that two solutions of $i z^{2}-(2-a i) z+b+i=0$ are:

$$
z=\frac{2-i+z_{1}}{2 i} \text { and } z=\frac{2-i+z_{2}}{2 i}
$$

Where $z_{1}$ and $z_{2}$ are the two square roots of $7+24 i$.
ii. Show that $7+24 i$ can be expressed in the form $25 \operatorname{cis}(\theta+2 k \pi)$ where $\tan (\theta)=\frac{24}{7}$ and $k \in \mathbb{Z}$.
iii. Hence show that $z_{1}=5 \operatorname{cis}\left(\frac{\theta}{2}\right)$ and $z_{2}=5 \operatorname{cis}\left(\frac{\theta}{2}+\pi\right)$, where $\tan (\theta)=\frac{24}{7}$
e) i. Derive the identities $\cos ^{2}\left(\frac{A}{2}\right)=\frac{1+\cos (A)}{2}$ and $\sin ^{2}\left(\frac{A}{2}\right)=\frac{1-\cos (A)}{2}$
ii. Use the identities in part a. above to establish that $\cos \left(\frac{\theta}{2}\right)=\frac{4}{5}$ and $\sin \left(\frac{\theta}{2}\right)=\frac{3}{5}$
iii. Hence, obtain the values of $z_{1}$ and $z_{2}$ in Cartesian form.
iv. Hence, determine a second solution to $i z^{2}-(2-a i) z+b+i=0$.

