1. Let F_{n} be the $n^{\text {th }}$ Fibonacci number where n is a positive integer. You are given that $F_{1}=1, F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for any $n \geq 3$. Prove using mathematical induction that $F_{3 a}$ is even for all positive integers a, i.e. $F_{3}, F_{6}, F_{9}, \cdots$ are even. (You may use the fact that $2 c$ is even for any integer c, and that the sum of two even integers is even.)
2. Let $\left\{u_{n}\right\}$ be an arithmetic sequence with common difference d. Prove using mathematical induction that $u_{1}+u_{2}+\cdots+u_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$.
3. Use mathematical induction to prove that $\frac{d}{d x}\left(-\cos ^{n}(x)\right)=\frac{n}{2} \sin (2 x) \cos ^{n-2}(x)$ for all positive integers n.
4. Use mathematical induction to prove that the sum of n terms of a finite geometric sequence is $\frac{u_{1}\left(1-r^{n}\right)}{1-r}$, where u_{1} is the first term of the sequence and r is the common multiplier.
5. Prove, by mathematical induction, that

$$
\cos (2 x) \cos \left(2^{2} x\right) \cos \left(2^{3} x\right) \cdots \cos \left(2^{n} x\right)=\frac{\sin \left(2^{n+1} x\right)}{2^{n} \sin (2 x)}
$$

for all positive integers n.
6. Let $R_{2}=e^{x}, R_{3}=x^{e^{x}}, R_{4}=e^{x^{e^{x}}}$ etc., i.e. let R_{n} be the iteration of this pattern which has $n-1$ exponents for any integer $n \geq 2$. If n is even, the base is e; if n is odd, the base is x.
a. [6] Show that $\frac{d}{d x} R_{3}=R_{3} R_{2}\left(\frac{1}{x}+\ln x\right)$. (Hint: let $y=R_{3}$ and begin by taking both sides to the natural logarithm.)
b. [2] Hence show that $\frac{d}{d x} R_{4}=R_{4} R_{3} R_{2}\left(\frac{1}{x}+\ln x\right)$.
c. [5] Using mathematical induction, prove that if n is even and $n \geq 4$, then

$$
\frac{d}{d x} R_{n}=R_{n}\left(\frac{d}{d x} R_{n-1}\right)
$$

(Hint: for the inductive step, show that $P(k+2)$ is true.)
d. [8] Using mathematical induction, prove that if n is odd and $n \geq 3$, then
$\frac{d}{d x} R_{n}=R_{n} R_{n-1}\left(\frac{1}{x}+R_{n-2} R_{n-3} \ln x\left(\frac{1}{x}+R_{n-4} R_{n-5} \ln x \cdots\left(\frac{1}{x}+R_{3} R_{2} \ln x\left(\frac{1}{x}+\ln x\right)\right)\right)\right)$.

