

Specialist Maths Units 3/4 Vectors Practice Questions

Short Answer Questions

Question 1

For the triangle $O A B$ shown, let the sides $\overrightarrow{O A}=\underset{\sim}{a}$ and $\overrightarrow{O B}=\underset{\sim}{b}$ and X be the midpoint of $\overrightarrow{O A}$ and Y be the midpoint of $\overrightarrow{O B}$.

a) Express the medians $(\overrightarrow{X B}$ and $\overrightarrow{Y A})$ in terms of vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
b) Given that $\overrightarrow{X C}=\alpha \overrightarrow{X B}$ and $\overrightarrow{Y C}=\beta \overrightarrow{Y A}$, write an expression of $\overrightarrow{X C}$ in terms of α, a and b.
c) Hence prove that α and β are equal to $\frac{1}{3}$

Question 2

The triangle $A B C$ has vertices at $A(5,3,3), B(3,5,2)$ and $C(-1,2,4)$.
a) Find the vectors $\overrightarrow{B A}$ and $\overrightarrow{B C}$.
b) Hence, show that $\triangle A B C$ is a right-angled triangle.
c) Calculate the area $\triangle A B C$.
d) Find the point D that makes the parallelogram $A B C D$.

Question 3

If $|\underset{\sim}{a}|=9$ and $|\underset{\sim}{b}|=7$ and $\underset{\sim}{a} \cdot \underset{\sim}{b}=12$, find $|\underset{\sim}{a}+\underset{\sim}{b}|$.

Question 4

Given $\overrightarrow{O A}=\underset{\sim}{i}-\underset{\sim}{\underset{\sim}{j}}-\underset{\sim}{k}$ and $\overrightarrow{O B}=5 \underset{\sim}{i}+3 \underset{\sim}{k}$.

a) Find the unit vectors $\hat{O A}$ and $\hat{O B}$.
b) Hence, find a unit vector which bisects the angle $A O B$.

Question 5

Given that $\underset{\sim}{u}=x_{1} \underset{\sim}{i}+y_{1} \underset{\sim}{j}+z_{1} \underset{\sim}{k}$ and $\underset{\sim}{v}=x_{2} \underset{\sim}{i}+y_{2} \underset{\sim}{j}+z_{2} \underset{\sim}{k}$, show that $u+v$ and $u-v$ are perpendicular if $|\underset{\sim}{u}|=|\underset{\sim}{v}|$.

Question 6

Given that $\underset{\sim}{a}=\underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}$ and $\underset{\sim}{b}=3 \underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}$, find two vectors $\underset{\sim}{c}$ and $\underset{\sim}{d}$ such that all three of the following conditions apply:
$-\underset{\sim}{a}=\underset{\sim}{c}+\underset{\sim}{d}$

- $\underset{\sim}{d}$ is parallel to $\underset{\sim}{b}$
$-\underset{\sim}{c}$ is perpendicular to $\underset{\sim}{b}$

Question 7

A line in a 3 D space has the direction vector $2 \underset{\sim}{i}+\underset{\sim}{j}-3 \underset{\sim}{k}$ and contains the point $P(1,-2,0)$. The point $Q(2,-1,4)$ is not on the line itself. Find the shortest distance between the line and the point Q.

Question 8

Resolve the vector $3 \underset{\sim}{i}+3 \underset{\sim}{j}+3 \underset{\sim}{k}$ into two vector components, one which is parallel to the vector $-\underset{\sim}{i}-2 \underset{\sim}{j}+4 \underset{\sim}{k}$ and one which is perpendicular to it.

Question 9

Given $\underset{\sim}{u}=2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}$ and $\underset{\sim}{v}=-\underset{\sim}{i}+\underset{\sim}{j \underset{\sim}{j}}-2 \underset{\sim}{k}$ and $\underset{\sim}{w}=a \underset{\sim}{i}+b \underset{\sim}{j}-6$
a) Find the value of a and b if $\underset{\sim}{w}$ is perpendicular to both $\underset{\sim}{u}$ and $\underset{\sim}{v}$.
b) Resolve $\underset{\sim}{v}$ into components parallel and perpendicular to $\underset{\sim}{u}$.

Question 10

If A and B have the Cartesian coordinates $(1,0,-1)$ and $(2,-1,1)$ respectively.
a) If θ is the angle between the vectors $\overrightarrow{O B}$ and $\overrightarrow{A B}$, show that $\cos (\theta)=\frac{5}{6}$.
b) Find the exact area of $\triangle O A B$.

Question 11

Find the coordinates of the point P, which lies on the line $A B$ and divides it in the ratio, $2: 5$, where $A=(-4,2,5)$ and $B=(10,9,-2)$.

Question 12

If $\underset{\sim}{a}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+\underset{\sim}{k}$ and $\underset{\sim}{b}=3 \underset{\sim}{i}+2 \underset{\sim}{j}-6 \underset{\sim}{k}$, find the cosine of the angle between these two vectors.

Question 13

Find the shortest distance between the points $P(3,4,7)$ and the line joining $A(1,1,1)$ and $B(2,3,3)$.

Question 14

Find a vector of length 3 which is perpendicular to $\underset{\sim}{a}=\underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}$ and $\underset{\sim}{b}=2 \underset{\sim}{i}+3 \underset{\sim}{j}+4 \underset{\sim}{k}$.

Question 15

Consider the vector $\underset{\sim}{a}=\underset{\sim}{i}-\underset{\sim}{j}-\underset{\sim}{k}, \underset{\sim}{b}=2 \underset{\sim}{i}+3 \underset{\sim}{j}-\underset{\sim}{k}$ and $\underset{\sim}{c}=\underset{\sim}{i}-\underset{\sim}{j}+5 \underset{\sim}{k}$.
a) Find the unit vector in the direction of $\underset{\sim}{a}$.
b) Verify that $\underset{\sim}{b}$ is perpendicular to $\underset{\sim}{c}$.

Question 16

The diagram below. Shows a circle of radius r. With centre at the origin O, the three points A, B and D all lie on the circle and have coordinates $A(a, b), B(-a, b)$ and $D(0,-r)$ where a, b and r are all positive real constants.
a) Let θ be the angle between vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Using vectors express $\cos (\theta)$ in terms of a and b.

b) Let α be the angle between $\overrightarrow{D A}$ and $\overrightarrow{D B}$. Using vectors show that $\cos (\alpha)=\frac{b}{\sqrt{a^{2}+b^{2}}}$
c) Hence show that $2 \alpha=\theta$.
i. A unit vector perpendicular to both $\underset{\sim}{b}$ and $\underset{\sim}{c}$ is given by $\underset{\sim}{n}=x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}$, where x, y and $z \in \mathbb{R}$ and $x<0$. Find $\underset{\sim}{n}$.
ii. The points A, B and C have position vectors $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ respectively to an origin O, A, B and C are four of the eight vertices of a cuboid. Find the volume of a cuboid.

Question 17

The points A, B and P have position vectors $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{p}$ respectively relative to an origin O and $\angle A O B$ is a right angle. It is known that $\overrightarrow{A P}=k \overrightarrow{A B}$, where k is a real constant. The relative positions of A, B and P are shown in the diagram below.
a) If $\angle A O P=\theta$ show that $\cos \theta=\frac{(1-k)|a|}{|P|}$

b) If $\angle B O P=\alpha$ find a similar expression for $\cos (\alpha)$.
c) If $\underset{\sim}{a}=\underset{\sim}{i}+\underset{\sim}{j}$ and $\underset{\sim}{b}=-2 \underset{\sim}{i}+\underset{\sim}{j}$ and $\theta=\alpha$ find the value of k.

Question 18

In the parallelogram shown below $\overrightarrow{O A}=\underset{\sim}{a}, \overrightarrow{O C}=\underset{\sim}{c}$ and $\overrightarrow{O M}=\underset{\sim}{m}$, where M is the point of intersection of the two diagonals.

Let $\overrightarrow{O M}=p \overrightarrow{O B}$ and $\overrightarrow{C M}=q \overrightarrow{C A}$, where $p, q \in \mathbb{R}$.
a) i. Show that $\underset{\sim}{m}=p(\underset{\sim}{a}+\underset{\sim}{c})$
ii. Show that $\underset{\sim}{m}=q \underset{\sim}{a}+(1-q) \underset{\sim}{c}$.
b) Hence, prove that the diagonals of a parallelogram bisect each other at point M.

Question 19

The diagram below shows an isosceles triangle with equal sides $A B$ and $B C$. Let $\overrightarrow{A B}=\underset{\sim}{b}, \overrightarrow{A C}=\underset{\sim}{a}$ and $\overrightarrow{A P}=m \overrightarrow{A C}$, where m is a real constant.
The angle $\angle A P B$ is a right angle.

a) By considering the vectors $\overrightarrow{P A}$ and $\overrightarrow{P B}$ show that $a \cdot b=m|a|^{2}$.
b) Show that $\cos (\alpha)=\frac{a \cdot a-a \cdot b}{|a||b|}$.
c) Find a similar expression for $\cos (\theta)$ involving the vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
d) Hence, show that $A P=P C$.

Question 20

Consider a triangle $A B C$ and let $\underset{\sim}{b}=\overrightarrow{A B}$ and $\underset{\sim}{c}=\overrightarrow{A C}$.
Let M and N be the midpoints of sides $B C$ and $A C$ respectively.
a) i. Show that $\overrightarrow{A M}=\frac{1}{2}(\underset{\sim}{b}+\underset{\sim}{c})$
ii. Find an expression for $\overrightarrow{B N}$ in terms of $\underset{\sim}{b}$ and $\underset{\sim}{c}$.

Let G be the point at which the medians $\overrightarrow{A M}$ and $\overrightarrow{B N}$ intersect.
Let $\overrightarrow{A G}=\lambda \overrightarrow{A M}$ and $\overrightarrow{B G}=\mu \overrightarrow{B N}$.
b) Prove that $\lambda=\mu=\frac{2}{3}$.
c) Hence prove that the medians of a triangle are concurrent

Let the point O be the origin
d) Prove that $\overrightarrow{O G}=\frac{1}{3}(\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C})$

Question 21

In the figure below, points A and B have position vectors α and β respectively, relative to $\xrightarrow{\text { an origin } O}$. The point D is such that $\overrightarrow{O D}=\lambda \overrightarrow{O A}$ and the point E is such that $\overrightarrow{A E}=\mu \overrightarrow{A B}$. The line $B D$ and $O E$ intersect at $X:$

It is also known that $\overrightarrow{O X}=\frac{2}{5} \overrightarrow{O E}$ and $\overrightarrow{X B}=\frac{4}{5} \overrightarrow{D B}$.
a) Express $\overrightarrow{X B}$ in terms of a, b and λ.

b) Express $\overrightarrow{O X}$ in terms of a, b and μ.
c) Using the fact that a and b are linearly independent, find the values of λ and μ.

Multiple Choice Questions

Question 1

In the Cartesian plane, a vector perpendicular to the line $3 x+2 y+1=0$ is:
A. $3 \underset{\sim}{i}+2 \underset{\sim}{j}$
B. $-\frac{1}{2} \underset{\sim}{i}+\frac{1}{3} \underset{\sim}{j}$
C. $2 \underset{\sim}{i}-3 \underset{\sim}{j}$
D. $\frac{1}{2} \underset{\sim}{\sim}-\frac{1}{3} \underset{\sim}{\sim}$
E. $2 \underset{\sim}{i}+3 \underset{\sim}{j}$

Question 2

Let $\underset{\sim}{m}=4 \underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k}$ and $\underset{\sim}{n}=\underset{\sim}{i}+\underset{\sim}{j}-2 \underset{\sim}{k}$. A unit vector in the direction of $m-2 n$ is:
A. $\frac{1}{7}(2 \underset{\sim}{i}-3 \underset{\sim}{j}+6 \underset{\sim}{k})$
B. $\frac{1}{3}(2 \underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k})$
C. $\frac{1}{\sqrt{17}}(2 \underset{\sim}{i}-3 \underset{\sim}{j}-2 \underset{\sim}{k})$
D. $\frac{1}{\sqrt{41}}(6 \underset{\sim}{i}+\underset{\sim}{j}+4 \underset{\sim}{k})$
E. $\frac{1}{\sqrt{29}}(3 \underset{\sim}{i}-\underset{\sim}{j}+4 \underset{\sim}{k})$

Question 3

Which of the following is not an expression for the vector resolute of vector $\underset{\sim}{a}$ in direction of $\underset{\sim}{b}$.
A. $\frac{a \cdot}{\underset{\sim}{b} \cdot \underset{\sim}{b}} \underset{\sim}{b}$
B. $\frac{a \cdot \frac{b}{|b|^{2}}}{\underline{\sim}}$
C. $\left(\underset{\sim}{a} \cdot \frac{b}{|\underset{\sim}{b}|}\right)\left(\frac{\underset{\sim}{b}}{|\underset{\sim}{\mid}|}\right)$
D. $(\underset{\sim}{a} \cdot \underset{\sim}{b}) \underset{\sim}{\hat{b}}$
E. $\underset{\sim}{a} \cdot \underset{\sim}{\hat{b}}$

Question 4

Consider the three vectors below:

$$
\begin{gathered}
\underset{\sim}{m}=\underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{k} \\
\underset{\sim}{n}=\underset{\sim}{i}+a^{2} \underset{\sim}{j}+a^{3} \underset{\sim}{k} \\
\underset{\sim}{p}=\underset{\sim}{i}-\underset{\sim}{j}
\end{gathered}
$$

A. The vectors are linearly independent for all values of a.
B. The vectors are linearly dependent for all values of a.
C. The vectors are linearly independent exactly when $a=2$.
D. The vectors are linearly independent exactly when $a \neq 2$.
E. None of the above.

Question 5

The position vectors of three points, A, B and C relative to the origin are given by a, b and c respectively.
If $3 a-5 b+2 c=0$ and $\overrightarrow{A B}=m \overrightarrow{B C}$, where m is a real constant, then.
A. $m=\frac{3}{2}$ and a, b, c are linearly dependent
B. $m=\frac{2}{3}$ and a, b, c are linearly independent
C. $m=-\frac{2}{3}$ and a, b, c are linearly independent
D. $m=\frac{2}{3}$ and a, b, c are linearly dependent
E. $m=\frac{3}{2}$ and a, b, c are linearly independent

Question 6

Let $\underset{\sim}{a}=2 \underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k}$ and $\underset{\sim}{b}=\underset{\sim}{j}+2 \underset{\sim}{k}$. A vector of magnitude $|\underset{\sim}{a}|$ in the direction of $\underset{\sim}{a}-\underset{\sim}{b}$, is:
A. $\frac{1}{3}(2 \underset{\sim}{i}-\underset{\sim}{2 j}-\underset{\sim}{k})$
B. $\frac{-\sqrt{6}}{3}(-2 \underset{\sim}{i}+\underset{\sim}{2 j}+\underset{\sim}{k})$
C. $\frac{\sqrt{6}}{6}(2 \underset{\sim}{i}-\underset{\sim}{j}-\underset{\sim}{k})$
D. $\sqrt{6}(2 \underset{\sim}{i}-2 \underset{\sim}{j}-\underset{\sim}{k})$
E. $\frac{\sqrt{6}}{3}(-2 \underset{\sim}{i}+\underset{\sim}{2 j}+\underset{\sim}{k})$

Question 7

Let $\underset{\sim}{u}=2 \underset{\sim}{i}-\underset{\sim}{j}-2 \underset{\sim}{k}$ and $\underset{\sim}{v}=a \underset{\sim}{i}+2 \underset{\sim}{j}-\underset{\sim}{k}$. If the scalar resolute of v in the direction of u is 1 , that value of a is:
A. $-\frac{3}{2}$
B. $-\frac{2}{3}$
C. 3
D. $\frac{2}{3}$
E. $\frac{3}{2}$

Question 8

The vectors $\underset{\sim}{a}, \underset{\sim}{b}$ and $\underset{\sim}{c}$ are all non-zero vectors. If $\underset{\sim}{a}$ is perpendicular to $\underset{\sim}{c}$, which one of the following statements must be true.
A. $a \cdot a=c \cdot c$
B. $a \cdot b=b \cdot c$
C. $(a \cdot c) b=b$
D. $a \cdot(a+c)=|a|^{2}$
E. $(a+c) \cdot(a-c)=|a|-|c|$

Question 9

The vectors $\underset{\sim}{u}$ and $\underset{\sim}{v}$ are linearly independent. Points A and B are represented by $2 \underset{\sim}{u}+x \underset{\sim}{v}$ and $y \underset{\sim}{u}+5 \underset{\sim}{v}$ respectively. If $\overrightarrow{A B}=(x+1) \underset{\sim}{u}+(y+1) \underset{\sim}{v}$ then:
A. $x=1, y=0$
B. $x=4, y=7$
C. $x=\frac{3}{2}, y=\frac{5}{2}$
D. $x=0, y=3$
E. $x=\frac{1}{2}, y=\frac{7}{2}$

Question 10

Points P, Q, R and M are such that $\overrightarrow{P Q}=5 \underset{\sim}{i}, \overrightarrow{P R}=\underset{\sim}{i}+\underset{\sim}{j}+2 \underset{\sim}{k}$ and $\overrightarrow{R M}$ is parallel to $\overrightarrow{P Q}$, so that $\overrightarrow{R M}=\lambda \underset{\sim}{i}$ where λ is a constant. The value of λ for which $\angle R Q M$ is a right angle is:
A. 0
B. $\frac{19}{4}$
C. $\frac{21}{4}$
D. 10
E. 6

Question 11

Let $\underset{\sim}{b}=\underset{\sim}{i}+2 \underset{\sim}{j}-\underset{\sim}{k}$ and $\underset{\sim}{a}$ be any vector such that $\underset{\sim}{a} \cdot \underset{\sim}{b}=2$. The smallest possible value of $|\underset{\sim}{a}|$ is:
A. 2
B. -1
C. $2 \sqrt{6}$
D. $\frac{\sqrt{6}}{3}$
E. $-\frac{\sqrt{6}}{3}$

Extended Response Questions

Question 1

Point A has position vector $\underset{\sim}{a}=m \underset{\sim}{i}+2 \underset{\sim}{j}$, point B has position vector $\underset{\sim}{b}=\underset{\sim}{i} \underset{\sim}{i}+6 \underset{\sim}{j}$, point C has position vector $\underset{\sim}{c}=n \underset{\sim}{i}+6 \underset{\sim}{j}$ and point D has position vector $\underset{\sim}{d}=3 \underset{\sim}{i}+2 \underset{\sim}{j}$ relative to the origin O, where m and n are real numbers.
a) Find $\overrightarrow{A B}$ and $\overrightarrow{A D}$ in terms of m.
b) Hence, use a vector method to show that the values of m and n are -2 and 6 respectively such that $A B C D$ is a rhombus.
c) Show that $\overrightarrow{A C}$ is perpendicular to $\overrightarrow{B D}$.
d) Find $\overrightarrow{A E}$, the vector resolute of $\overrightarrow{A B}$ parallel to $\overrightarrow{A D}$.
e) Let θ° be the angle between vector $\overrightarrow{A B}$ and vector $\overrightarrow{A D}$ where $\theta<90^{\circ}$

Question 2

a) Find the following vectors in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
i. $\overrightarrow{A B}$
ii. $\overrightarrow{B P}$ where $\overrightarrow{O P}=\frac{1}{3} \overrightarrow{O A}$.
iii. $\overrightarrow{B Q}$ where $\overrightarrow{P Q}=\overrightarrow{B P}$.
b) Now consider the particular triangle $O A B$ with $\overrightarrow{O A}=\underset{\sim}{i}+\underset{\sim}{j} \underset{\sim}{j}$ and $\overrightarrow{O B}=\underset{\sim}{i}$, with O being the origin.
If as above, $\overrightarrow{O P}=\frac{1}{3} \overrightarrow{O A}$ and $\overrightarrow{P Q}=\overrightarrow{B P}$. Show that $\overrightarrow{O Q}=2 \underset{\sim}{j}$
c) i. Find $\overrightarrow{O R}$ such that $O Q R B$ forms a rectangle.
ii. Hence show that $\overrightarrow{O R}=\mu \overrightarrow{O A}$ and find the value of μ.
d) C is a point such that $|\overrightarrow{O C}|=\mu|\overrightarrow{A C}|$ and $\overrightarrow{O C}=3 \underset{\sim}{i}+p \underset{\sim}{j}+q \underset{\sim}{k}$ and $\angle A O C=60^{\circ}$, Find the values of p and q.

Question 3

$A O C$ is a triangle, where F and E is the midpoint of $\overrightarrow{O A}$ and $\overrightarrow{A E}$ respectively. The medians $C F$ and $O E$ intersect at X.
Let $\overrightarrow{O A}=\underset{\sim}{a}$ and $\overrightarrow{O C}=\underset{\sim}{c}$.
a) Find $\overrightarrow{C F}$ and $\overrightarrow{O E}$ in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$.
b) i. If $\overrightarrow{O E}$ is perpendicular to $\overrightarrow{A C}$, prove that triangle $O A C$ is isosceles.
ii. If furthermore $\overrightarrow{C F}$ is perpendicular to $\overrightarrow{O A}$, find the magnitude of angle $A O C$, and hence prove that triangle is $A O C$ is equilateral.
c) H and K are the midpoints of $O E$ and $C F$ respectively.
i. Show that $\overrightarrow{H K}=\lambda \underset{\sim}{c}$ for $\lambda \in \mathbb{R} \backslash\{0\}$ and $\overrightarrow{F E}=\mu \underset{\sim}{c}$ for $\mu \in \mathbb{R} \backslash\{0\}$
ii. Give reasons why triangle $H X K$ is similar to triangle $E X F$.
iii. Hence prove that $O X: X E=2: 1$.

Question 4

The diagram below shows that trapezium $O A E C$, in which $C E$ is parallel to and four times as long as $O A . B$ is the midpoint of $C E$. Let $\overrightarrow{O A}=\underset{\sim}{a}$ and $\overrightarrow{O C}=\underset{\sim}{c}$.
a) Express in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$
i. $\overrightarrow{C E}$
ii. $\overrightarrow{C B}$
iii. $\overrightarrow{A B}$
iv. $\overrightarrow{O E}$

Let D be the point on $\overrightarrow{A B}$ such that $\overrightarrow{A D}: \overrightarrow{D B}=1: 2$
b) Express in terms of $\underset{\sim}{a}$ and $\underset{\sim}{c}$
i. $\overrightarrow{A D}$
ii. $\overrightarrow{O D}$
c) Use your results from parts \mathbf{a}. and \mathbf{b}. to explain why O, D, E are collinear.

Question 5

The vertices of a tetrahedron $O A B C$ are given by the position vectors, $\overrightarrow{O A}=4 \sim \underset{\sim}{i}+\underset{\sim}{j}, \overrightarrow{O B}=3 \underset{\sim}{j}$ and $\overrightarrow{O C}=\sqrt{\lambda} \underset{\sim}{k}$.
a) Find the magnitude of $\angle A O B$ in degrees and correct to 2 decimal places.
b) Find:
i. $\overrightarrow{A C}$
ii. $\overrightarrow{B C}$
c) Given that $\angle A C B=30^{\circ}$, find the value/s of λ.
d) For a different tetrahedron where $\sqrt{\lambda}=6$ giving $\overrightarrow{O A}=\underset{\sim}{i}+2 \underset{\sim}{j}$ and $\overrightarrow{O C}=6 \underset{\sim}{k}$.

Let X be a point on the line segment $A B$
Find the coordinates of X such that $C X$ is perpendicular to $A B$.

Question 6

Points $O(0,0,0), A(6,2,-1)$ and $B(4,-3,3)$ form the vertices of a triangle as shown below (the z-axis comes out of the page).
The position vectors $\overrightarrow{O A}=\underset{\sim}{a}=\underset{\sim}{i}+2 \underset{\sim}{j}-\underset{\sim}{k}$ and $\overrightarrow{O B}=\underset{\sim}{b}=\underset{\sim}{i}-3 \underset{\sim}{j}+3 \underset{\sim}{k}$ are indicated. AP is an altitude of triangle $O A B$.
a) Find the scalar resolute of $\underset{\sim}{a}$ in the direction of $\underset{\sim}{b}$.
b) Hence find the length of the altitude $A P$.
c) Find the exact area of triangle $O A B$.
d) Find a vector that bisects the angle $A O B$.
e) $O E C D$ is a parallelogram. Given that $\overrightarrow{C D}$ is perpendicular to $\overrightarrow{O E}$, prove using vectors that $O C E D$ is a rhombus.

Question 7

a) If $\underset{\sim}{a}=2 \underset{\sim}{i}+3 \underset{\sim}{j}$ and $\underset{\sim}{b}=4 \underset{\sim}{i}-5 \underset{\sim}{j}$, and given $|\underset{\sim}{r}-\underset{\sim}{a}|=|\underset{\sim}{r}-\underset{\sim}{b}|$
i. Find the Cartesian equation and describe the path of the set of points with position vector $\underset{\sim}{r}=x \underset{\sim}{i}+y \underset{\sim}{j}$.
ii. Sketch a graph of this path, clearly showing its relationship with the vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

b) If $\underset{\sim}{a}=2 \underset{\sim}{i}+3 \underset{\sim}{j}$ and $\underset{\sim}{b}=4 \underset{\sim}{i}-5 \underset{\sim}{j}$, and given $(\underset{\sim}{r}-\underset{\sim}{a}) \cdot(\underset{\sim}{r}-\underset{\sim}{b})=0$
i. Find the Cartesian equation and describe the path of the set of points with position vector $\underset{\sim}{r}=x \underset{\sim}{i}+y \underset{\sim}{j}$.
ii. Sketch a graph of this path, clearly showing its relationship with the vectors $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

The Institute for Enquiring Minds

Question 8

Consider triangle $O A B$ where O is the origin, $\overrightarrow{O A}=\underset{\sim}{a}$ and $\overrightarrow{O B}=\underset{\sim}{b}$.
P, M and N are midpoints of $O A, A B$ and $O B$ respectively. The point Q is the intersection point of the intervals $O M$ and $A N$. Given $\overrightarrow{O Q}=\lambda \overrightarrow{O M}$ and $\overrightarrow{A Q}=\mu \overrightarrow{A N}$.

a) i. Find $\overrightarrow{O Q}$ in terms of $\lambda, \underset{\sim}{a}$ and $\underset{\sim}{b}$.
ii. Find $\overrightarrow{O Q}$ in terms of $\mu, \underset{\sim}{a}$ and $\underset{\sim}{b}$.
iii. Hence show that $\lambda=\mu=\frac{2}{3}$.
b) Using vectors:
i. Prove that P, Q and B are collinear.
ii. Find $P Q: Q B$
iii. Given $\underset{\sim}{a}=\underset{\sim}{4 i}+3 \underset{\sim}{j}$ and $\underset{\sim}{b}=\underset{\sim}{i}+2 \underset{\sim}{j}-2 \underset{\sim}{k}$.
iv. Find the coordinates of the point Q.
v. Find the magnitude of $\angle A O B$ to the nearest tenth of a degree.
vi. Find the coordinates of the point R where R is on the line $O A$ and $O R$ is perpendicular to $B R$.

Question 9

$A B C D$ is a trapezium with the side $A B$ parallel to the side $D C$ as shown.
P and Q are the midpoints of sides $A D$ and $B C$ respectively.
a) Using $\underset{\sim}{a}, \underset{\sim}{b}, \underset{\sim}{c}$ to represent $A B, A D$ and $B C$ respectively express the vector $\overrightarrow{P Q}$ in two different ways as the sum of vectors along the sides of the trapezium.
b) By equating your two answers above, prove that the median, $P Q$ is parallel to two sides of the trapezium.
c) Show that the length of the median, $P Q$, is equal to half the sum of the lengths if the parallel sides of a trapezium.

Question 10

Consider the two points, $A=(-2,1,2)$ and $B=(2,3,6)$.
Let $\underset{\sim}{a}=\overrightarrow{O A}$ and $\underset{\sim}{b}=\overrightarrow{O B}$.
a) Find the cosine of the angle between $\underset{\sim}{a}$ and $\underset{\sim}{b}$.

Let C be the point on $A B$ such that $O C$ bisects $\angle A O B$.
b) Use an appropriate double angle formula, and your answer to a, find the cosine of $\angle A O C$.
c) Find $\underset{\sim}{\hat{a}}$ and $\underset{\sim}{\hat{b}}$.

Let X be the point that lies midway between the endpoints of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
d) Explain why X must lie on $O C$.
e) Find $\overrightarrow{O X}$.
f) If $\overrightarrow{A C}=\lambda \overrightarrow{A B}$ and $\overrightarrow{O X}=\beta \overrightarrow{O C}$, find λ and β.
g) Hence find the coordinates of C.

Question 11

Consider two points, $A=(-1,-2,2)$ and $C=(4,2,4)$ relative to an origin O.
a) Show that $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{O C}$.

A third point exists $B=(x, y, z)$ such that $O A B C$ forms a rectangle.
b) Show that $B=(3,0,6)$.
c) Prove that the diagonals of $O A B C$ bisect one another.

Consider another point $V=(-1.5,1.5,3)$ such that $O A B C V$ forms a rectangular based pyramid. Let E be the closest point to V on the plane $O A B C$. Let M be the midpoint of $A B$.
d) If E is a point on $O M$, show that $E=(0.5,-0.5,2)$
e) Hence, find the height of pyramid $O A B C V$.
$\overrightarrow{O E}, \overrightarrow{A E}$ and $\overrightarrow{E V}$ are mutually perpendicular.
Vicky takes note of this and decides to reposition the origin to E so that the vertices of the pyramid can be described with simpler position vectors.
She does by defining new mutually perpendicular unit vectors relative to E as follows:

$$
\begin{aligned}
& i^{*}=\text { unit vector in the direction of } \overrightarrow{E M} \\
& j^{*}=\text { unit vector in the direction of } \overrightarrow{E A} \\
& k^{*}=\text { unit vector in the direction of } \overrightarrow{E V}
\end{aligned}
$$

f) Describe position vectors to O, A and V in terms of i^{*}, j^{*}, k^{*}
g) Describe position vectors to C in terms of i^{*}, j^{*}, k^{*}

Question 12

An altitude of a triangle is a line segment drawn from one vertex to the opposite side, meeting the opposite side at 90°. In the diagram on the left $A X$ and $B Y$ are two altitudes of the triangle $A B C$.
H is the point of intersection $A X$ and $B Y$.
a) Express the vector $\overrightarrow{B C}$ in terms of $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

b) What is the scalar product $\overrightarrow{A H} \cdot \overrightarrow{B C}$?
c) What is the scalar product $\overrightarrow{A C} \cdot \overrightarrow{B H}$?
d) Express the vector $\overrightarrow{C H}$ in terms of $\overrightarrow{A C}$ and $\overrightarrow{A H}$.
e) Use a vector method (making use of all previous answers) to show that $\overrightarrow{C H} \cdot \overrightarrow{A B}=0$
f) What is the geometric result you have proved in part e. ?

