a) Let a regular n-gon be inscribed in a circle of radius r. Let A denote the area of the region inside the circle but not inside the n-gon. Prove that $A=\pi r^{2}-\frac{n r^{2}}{2} \sin \left(\frac{2 \pi}{n}\right)$.
b) Given that $\sin x \approx x \approx \tan x$ as $x \rightarrow 0^{+}$, prove that $\lim _{n \rightarrow \infty} A=0$.
c) Let us consider another 'limiting polygon' case. Suppose we have a regular n-gon with fixed side lengths x. Find an expression for the area of this n-gon, denoted B. Show that $\lim _{n \rightarrow \infty} B=\infty$.
d) (d) illustrates the construction of what is known as an apeirogon. Is an apeirogon a circle? (Look up the definition of a circle.) If not, what is the difference between them?
e) Suppose that x is no longer fixed and allowed to depend on n. Suggest an formula for x, dependent on n such that $\lim _{n \rightarrow \infty} B$ is positive and finite, and prove that this is the case. Is this limiting shape a circle?

